Vector Boson + jets production at the Tevatron

Keith Matera

From the University of Illinois at Urbana-Champaign on behalf of the CDF and D0 collaborations

ICHEP 2014, Valencia (ES) 2-9 July 2014

Vector boson plus heavy flavor jets production is a good probe of QCD...

First-order production is sensitive to the proton PDF

Provides stringent test of perturbative QCD calculations

• Small h.f. σ = challenging!

...and it is also an important model for background in other searches

As well as new physics searches (e.g. dark matter candidates)

The Tevatron provided a decade's worth of √s =1.96 TeV pp data

Collided pp bunches at √s=1.96 TeV through 30/09/2011

Peak luminosity~3-4 x 10³² cm⁻² s⁻¹

■The CDF and D0 experiments recorded up to ~10 fb⁻¹ each

While designed for high- p_T physics, CDF & D0 are powerful h.f. tools

- High CM energy means more species of h.f production---even compared to B factories
- Precision vertex reconstruction capabilities (CDF & D0)
- Excellent tracking for mass resolution (CDF)

- Powerful trigger on displaced vertices (CDF)
- Charge symmetric detector (D0)
- Hermetic calorimeter and excellent energy resolution (D0)

A legacy of great V + jets/heavy flavor results! And now some more...

Most recently:

Final State	Luminosity	Detector	Publication
Z+b	9.7 fb ⁻¹	D0	[PRD 87 , 092010 (2013)]
Z+c	9.7 fb ⁻¹	D0	[PRL 112 , 042001 (2014)]
γ+b _{jets} W/Z+Y	8.7 fb ⁻¹	D0	[Phys. Lett. B. (Submitted) arXiv:1405.3964]
W/Ž+Y	9.1 fb ⁻¹	CDF	[CDF Public Note 11099 (Preliminary)]
W/Z+D*	9.7 fb ⁻¹	CDF	[CDF Public Note 11087 (Preliminary)]

This is what we'll focus on in this talk!

A standard V+jets analysis begins with a high- p_T lepton/photon trigger

- Lepton is paired with MET (for W) or an oppositely-signed lepton (for Z)
- Or photon is compared to shower profiles

 Midpoint jet algorithm defines jets within a cone of R=0.4-0.7

- For heavy-flavor, a secondary vertex is tagged. M_{inv} of this vertex can be fit to bottom / charm / light flavor profiles.
- Detector-level cross-sections are unfolded back to particle level with MC and data-driven techniques.

Recently, D0 made the first observation of $Z+c_{jet}$ at the Tevatron

Jet flavor is identified using a combination of jet properties:

■ Jets required to have p_T >20 GeV, $|\eta|$ <2.5

Jets in Z events had more charm than predicted by NLO, on average

Measures

$$\frac{\sigma(Z + c_{jet})}{\sigma(Z + \text{jet})}$$
 and $\frac{\sigma(Z + c_{jet})}{\sigma(Z + b_{jet})}$

Integrated c-jet fractions
 2.5 times higher, on avg,
 than NLO predictions

Measured (stat) (syst)
$$R_{c/jet} = 8.92 \pm 0.0053 \pm 0.0089$$

$$R_{c/b} = 4.00 \pm 0.21 \pm 0.58$$

 Results agree best with Pythia + enhanced g→cc splitting ratio

This supplements earlier D0 results in $Z+b_{iet}$ events

- Measured σ(Z+b_{jet})/σ(Z+jet)
 as a function of several
 kinematic variables:
- Differential results by $p_T(Z)$, $\Delta \phi(Z,jet)$ agree best with ALPGEN, SHERPA, respectively
- Integrated fraction $\sigma(Z+b_{jet})/\sigma(Z+jet)$ for $p_T(jet)>20$ GeV, $|\eta|^{jet}|<2.5$ as measured in data:

 $0.0196 \pm 0.0012 \pm 0.0013$ (stat) (syst)

agrees with NLO pQCD†: $0.0206^{+0.0022}_{-0.0013}$

[†][PRD **69**, 074021 (2004)]

A D0 study of photons plus *b*-jets extends this work in a new direction

■Tests pQCD at high Q² over wide range of parton momentum fractions

$$gb \rightarrow \gamma b$$
 Domina modera

Dominates at low to moderate $p_T(\gamma)$

$$gg/q\overline{q} \rightarrow \gamma b\overline{b}$$
 Dominates at high $p_T(\gamma)$

- Photons selected with |y| < 1.0, $30 < p_T < 200 \ GeV$.
- NLO predictions good; SHERPA predicts shape, but not scale.

4/7/2014 Keith Matera [arXiv:1405.3964] 11

New CDF Y+W/Z measurements provide upper limits on SM & SUSY searches

Y+W/Z is a rare process with a SM cross-section predicted to be outside the range of sensitivity of the Tevatron

Sensitive to non-relativistic
 QCD models and new physics
 (e.g. a SUSY Higgs→Y+W/Z)

CDF has observed no Y+W/Z excess, setting the best σ limits on $p\bar{p} \rightarrow Y+W/Z$

- Looks for $Y(1s) \rightarrow \mu\mu$ and W/Z charged lepton decays with standard cuts
- Observes 1(1) Y+W(Z) candidate over an expected bkg of 1.2±0.5 (0.1±0.1) events

Sets 95% C.L. cross-section limits:

	$\mathbf{I} + \mathbf{W}$	1+Z
expected limit (pb)	5.6	13
observed limit (pb)	5.6	21
Run I observed limit (pb)	93	101

Table 5: Cross section limits at 95% CL for ΥW and ΥZ production. This analysis utilizes 9.4 fb⁻¹ of CDF II Run II data. The Run I analysis utilized 83 pb⁻¹ of CDF Run I data.

CDF has also measured $W/Z+D^*$ production for $p_T(D^*) > 3$ GeV

■ Fully-reconstructs $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ at the track level in W/Z events

• Signal discriminant is mass difference between D^* and D^0 vertices. Background is reduced with a neural network to improve stat. unc.

Measurements of $\sigma(W/Z+D^*)/\sigma(W/Z)$ compare favorably with simulation

10

15

 $p_T(D^*)$ [GeV/c]

20

Data/Theory

4/7/2014

...both differentially, and for inclusive sample:

Production	CDF Run II Preliminary	Pythia 6.2.16
process	$\int \mathcal{L}dt = 9.7 \text{ fb}^{-1}$	(CTEQ5L)
$ (p_T(D^*) > 3 \text{ GeV/c}) $	$\sigma(V + D^*)/\sigma(V)$ (%)	$\sigma(V+D^*)/\sigma(V)$ (%)
	$\pm(\mathrm{stat})\pm(\mathrm{syst})$	± (pdf unc)
$W(\rightarrow e\nu) + D^*$	$1.74 \pm 0.21 \pm 0.17$	1.77 ± 0.07
$W(\rightarrow \mu \nu) + D^*$	$1.75 \pm 0.17 \pm 0.05$	1.77 ± 0.07
Combined results:		
$W(\to e\nu/\mu\nu) + D^*$	$1.75 \pm 0.13 \pm 0.09$	1.77 ± 0.07
$Z(\rightarrow ee) + D^*$	$1.0 \pm 0.6 \pm 0.2$	1.36 ± 0.05
$Z(\rightarrow \mu\mu) + D^*$	$1.8 \pm 0.5 \pm 0.2$	1.36 ± 0.05
Combined results:		
$Z(\rightarrow ee/\mu\mu) + D^*$	$1.5 \pm 0.4 \pm 0.2$	1.36 ± 0.05

■ Can identify D* down to p_T(D*) > 3 GeV

Keith Matera

30

25

Summary

- The full CDF/D0 datasets continue to provide interesting new vector boson plus jets results, adding to their legacy
- In the past year, have provided three firsts in $p\bar{p}$ collisions:
 - first observation of Z+c
 - first observation of $W/Z+D^*$ at low $p_T(p_T > 3 \text{ GeV})$
 - first measurement of isolated γ plus b pair production
- Have also placed the current best limits on $p\bar{p} \rightarrow Y + W/Z$ production, and measured b_{iet} fractions in Z+jet events
- These analyses will benefit MC tunings, and many future analyses at both the Tevatron and LHC---more to come as we continue to explore the full datasets!

4/7/2014

Further Reading

• All results discussed in this talk are available on the CDF and D0 Public Results pages:

CDF:

http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

D0:

http://www-d0.fnal.gov/results/

CDF W/Z+D* analysis also splits the W+D* signal by production process

■ There are three major contributions to our final *W*+*D*^{*} signal:

$$s(d)+g \rightarrow W+c$$

$$s(d) \longrightarrow W^{-}$$

$$g \xrightarrow{5000000} c$$

$$14 \pm 6\%$$

- The percentages above are derived using neural networks, and by exploiting sign correlations in the *W* and *c* of Process 1.
- •First measurement of these processes at low p_{τ} (>3 GeV)!